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Efficient synthesis of novel carbocyclic nucleosides via sequential
Claisen rearrangement and ring-closing metathesis
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Abstract—Very efficient synthetic route to novel 4��-C-hydroxymethyl branched carbocyclic nucleosides was described. The
stereocontrolled synthesis of target nucleosides was successfully achieved by Johnson orthoester–Claisen rearrangement, ring-clos-
ing metathesis (RCM) starting from a simple acyclic precursor 1,3-dihydoxy acetone 1. Nucleosidic bases (adenine and cytosine)
were coupled by Pd(0)-catalyzed allylic alkylation in a highly regiocontrolled manner. © 2002 Elsevier Science Ltd. All rights
reserved.

Emerging drug resistant virus strains as well as toxicity
are major problems in antiviral chemotherapy. There-
fore, a number of structurally modified nucleosides have
been synthesized to overcome these drawbacks. Among
them, carbocyclic nucleosides have attracted great inter-
est, as they show interesting chemical and metabolic
features. Carbocyclic nucleosides are a unique class in
which a methylene group replaces the oxygen in the

furan, which results in metabolic stability to endogenous
phosphorylase.1 The biologically active natural carbo-
cyclic nucleosides such as aristeromycin2 and neplanocin3

were found to possess interesting biological properties
including antiviral and antitumor activity. Furthermore,
the recent approval of abacavir by FDA as an anti-HIV
agent strongly warranted the further exploration of
carbocyclic nucleosides as chemotherapeutic agents.4

Scheme 1.

Keywords : Johnson orthoester–Claisen rearrangement; ring-closing metathesis; Pd(0)-catalyzed reaction; carbocyclic nucleoside.
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Recently, a number of 4��-substituted nucleoside5 ana-
logues have been synthesized and showed significant
antitumor or antiviral activities. Among them, 4��-C-
methyl-2�-deoxycytidine,6 4��-C-fluoromethyl-2�-deoxy-
cytidine,7 4��-C-hydroxymethylthymidine8 and 4��-C-
azidomethylthymidine9 demonstrated very potent bio-
logical activities, but their high toxicity rendered them
ineffectual as drugs.

On the basis of these interesting results and as part of
our drug discovery programs, we have designed novel
4��-hydroxymethyl substituted carbocyclic nucleosides
which hybrid the properties of enzyme resistant carbo-
cyclic as well as biologically active 4��-C-branched
furanose nucleosides. Herein, we disclose their de novo
synthetic routes employing very versatile three step
sequences ([3,3]-sigmatropic rearrangement, ring-clos-
ing metathesis (RCM), and Pd(0)-catalyzed allylic alkyl-
ation) from very simple acyclic precursor ‘1,3-dihy-
droxyl acetone’.

As outlined retrosynthetically in Scheme 1, the syn-
thetic route is straightforward. We envisaged that John-
son orthoester–Claisen rearrangement of 3 would
produce the desired quaternary carbon 4 with suitable
functional groups, from which cyclopentenol 7 could be
installed by successive carbonyl addition and RCM. It
is worthwhile that the subjection of 8 to Pd(0)-catalyzed
allylic alkylation conditions would produce the desired
nucleosides with the correct regiochemistry.

The synthetic route of the key intermediate 8 is illus-
trated in Scheme 2. 1,3-Dihydroxyacetone was con-
verted to �,�-unsaturated ethyl ester 2.10 The
�,�-unsaturated ethyl ester 2 was reduced by DIBALH
at −20°C in CH2Cl2 to give allylic alcohol 3 in 97%
yield, which was subjected to standard Johnson’s
orthoester Claisen rearrangement11 using triethyl
orthoacetate to produce �,�-unsaturated ester 4 in 86%

yield.12 Slow addition of DIBALH to solution of the
ester 4 in CH2Cl2 at −78°C could furnish the desired
aldehyde 5, which was subjected to carbonyl addition
by vinyl magnesium bromide to provide divinyl 6 in
74% two-step yield.

With divinyl 6 in hand, we turned our attention to the
formation of five-membered carbocycle. RCM13 now
stands as one of the most powerful tools for the prepa-
ration of medium to large ring systems via C�C bond
formation. We successfully adopted this powerful pro-
cedure for elaboration of our desired five member
carbocyclic ring. Thus, divinyl 6 was subjected to nor-
mal RCM conditions using [benzylidene-bis(tricyclo-
hexylphosphine)-dichlororuthenium] to afford cyclo-
pentenol 7 in 97% yield. The facile conversion of
hydroxyl group of 7 to 8 was made by using ethyl
chloroformate in pyridine solvent in 92% yield.

It is well known that the palladium-catalyzed allylic
alkylations14 have been the cornerstone in synthetic
organic chemistry because of their reliable high fidelity
of regio- and stereochemistry. We have successfully
adopted this methodology for the synthesis of desired
nucleosides (Scheme 3). The adenine and cytosine anion
generated by NaH/DMSO in THF/DMSO at 60°C was
successfully condensed with 8 using tris(dibenzylidene-
acetone)-dipalladium(0)-chloroform adduct as a cou-
pling catalyst to give 9 and 10 in 64 and 46% yield,
respectively, without their regioisomers. The depro-
tected 2�,3�-olefinic nucleosides 1115 and 1216 were read-
ily obtained by the treatment of 9 and 10 with
tetrabutylammonium fluoride (TBAF) in THF solvent
in high yield (91–93%).

Also, it should be noted the synthesized nucleosides 11
and 12 are novel compounds based on extensive litera-
ture searching. Antiviral activities of synthesized com-
pounds against HIV-1, HBV, HSV-1, HSV-2, and

Scheme 2. Reagents and conditions : (i) DIBALH, CH2Cl2, −20°C, 2 h, 97%; (ii) triethyl orthoacetate, propionic acid, overnight,
130°C, 86%; (iii) DIBALH, toluene, −78°C, 2 h, 79%; (iv) vinylMgBr, THF, −78°C, 1 h, 94%; (v) Cl2(Cy3P)2Ru�CHC6H6,
benzene, reflux, 1 h, 97%; (vi) ClCO2Et, pyridine, DMAP, rt, overnight, 92%.
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Scheme 3. Reagents and conditions : (i) adenine, and cytosine, Pd2(dba)3·CHCl3, P(O-i-Pr)3, NaH, THF/DMSO, reflux, overnight,
46–64%; (ii) TBAF, THF, rt, 3 h, 91–93%.

HCMV were evaluated. However, none of them
showed any significant activity or cytotoxicity up to 100
�M.

In summary, we have developed a very efficient syn-
thetic route to the novel 4��-C-hydroxymethyl substi-
tuted carbocyclic nucleosides starting from a simple
1,3-dihydroxy acetone. The required stereochemistry
was successfully elaborated by sequential Johnson
orthoester–Claisen rearrangement, RCM, and Pd(0)-
catalyzed allylic alkylation reactions. In our laboratory,
these reiterative three-step sequences have been widely
applied for the de novo stereoselective syntheses of
novel nucleosides having diverse functionality and
stereochemistry.
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